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Abstract
A dilute suspension of spherical particles with permanent electric dipole
moment and additional polarizability is subject to a strong DC external electric
field. In addition, a weak AC probe field is suddenly switched on at time t = 0.
The linear response of the polarization is described by solving the first-order
Smoluchowski equation for the orientational distribution function. Both the
transient and the steady response are obtained. The transient is given explicitly
as a sum of exponentially decaying functions of time characterized by a set
of decay rates and associated amplitudes. A fast numerical method is used to
calculate the spectrum of decay rates and the amplitudes of the decaying modes
from the Laplace transform of the perturbed distribution function. The steady
response is characterized by a complex susceptibility which is given explicitly
in terms of the decay rates and amplitudes that characterize the transient. The
transient solution, its mean decay time and the susceptibility are all given as
explicit functions of the frequency of the probe field. The results for simple
permanent dipoles are compared with the much richer results for dipoles with
polarizability as well.

1. Introduction

The dynamics of suspensions of mesoscale particles on intermediate and long timescales is
described by a generalized diffusion equation incorporating both translational and rotational
diffusion of the suspended particles [1, 2]. One of the oldest problems involving this kind
of dynamics is the study of the electric polarization of a fluid of dipolar particles undergoing
rotational diffusion [3–7]. For a dilute fluid, subject to a weak external electric field, the
analysis of Debye gave simple analytical expressions for the polarization relaxation function
when the external field is suddenly turned off and for the linear response of the polarization
to a weak external sinusoidal field [3, 4]. In the Debye theory the underlying dynamics is
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given by the Smoluchowski equation describing rotational diffusion of the dipoles. Because
it neglects inertial rotational effects, such a theory is only partially successful in describing
molecular fluids [4]. However, for dilute suspensions of colloid-sized particles which have
dielectric or magnetic properties (as in a ferrofluid [8, 9]), the Smoluchowski dynamics should
be an excellent description.

The original Debye problem has interesting extensions both to relaxation phenomena
occurring when a strong external field suddenly changes its magnitude or direction rather than
being switched off, and to the differential susceptibility of a suspension subject to a strong DC
background field [11–15]. The rotational dynamics also can be used to discuss the Kerr effect
for dielectric particles or the Néel effect in magnetic particles [8, 10, 14, 16, 17]. In recent years
a method of treating these strong-field non-linear relaxation problems by a continued-fraction
approach has been worked out which gives exact closed-form expressions for the frequency
dependence of the relaxation functions [7, 11, 14]. However, there is a more direct approach
which leads quickly to a representation of the relaxation functions as a superposition of modes
which decay exponentially in time [15–17]. The decay rates and associated amplitudes of
these modes are easily determined from the poles and residues of the Laplace transform of the
expansion coefficients of the orientational distribution function.

In the present work we study the linear response of a dilute suspension of spherical
dielectric particles in a strong DC bias field to a weak AC perturbing field which is
suddenly switched on at time t = 0. In earlier work [11], the steady-state linear
susceptibility was obtained indirectly from the continued-fraction solution for the after-effect
function [4] associated with the relaxation problem. The steady-state non-linear susceptibility
has more recently been studied numerically in the context of a matrix continued-fraction
formalism [18, 19]. We show that our analysis of the relaxation problem [15, 17] carries over
easily to the linear response calculation in a strong bias field, giving both the transient and
the steady response to the AC perturbing field. We show that the transient contribution, like
the relaxation functions studied earlier, is a superposition of exponentially decaying modes
and, more surprisingly, find that the frequency-dependent susceptibility can be expressed in
terms of the transient solution. This representation displays the frequency dependence of the
susceptibility explicitly as a sum of poles allowing easy numerical evaluation of the differential
susceptibility in strong background fields at all frequencies.

Although the theory we present is equally applicable to electric or magnetic dipolar
particles, for comparability with our earlier calculations we shall use the electrical picture
throughout. For experimental study, magnetic suspensions [8, 9] may be preferable for
exploring a wider range of the parameters introduced below. In section 2 we introduce the
rotational Smoluchowski equation and its equilibrium solution in a strong external DC field.
In section 3 we derive the equations giving the linear response to a weak longitudinal AC
probe field, in section 4 we solve these equations by Laplace transformation and in section 5
we simplify the solution by removing the steady-state pole in the Laplace transform solution.
In section 6 we give simple explicit expressions for the transient solution, for its mean decay
time and for the complex susceptibility describing the steady-state response. In section 7 we
give the corresponding results for a transverse probe field, in section 8 we present numerical
studies and in section 9 we present conclusions.

2. Polar and polarizable particles

We consider a dilute colloidal suspension of anisotropic spherical particles which carry a
permanent electric dipole moment µ = mu where the unit vector u specifies the direction of
the dipole, and which, in addition, are polarizable with low-frequency electric polarizabilities
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α1, α2, respectively parallel to and perpendicular to the particle symmetry axis specified
by u. For a dilute suspension of such mesoscale particles with slow rotational diffusion,
we may neglect both inertial effects and dipole–dipole interaction effects. To describe
the macroscopic polarization of the suspension it then suffices to study the single-particle
orientational distribution function, W (u, t), which satisfies the rotational Smoluchowski
equation

∂W

∂ t
= DW = DR

∂

∂u
·
(

∂W

∂u
+ β

∂V

∂u
W

)
, (1)

where DR is the rotational diffusion coefficient, β = 1/kB T and V is the potential energy of
a single particle in a uniform applied field E:

V (u) = −mu · E − 1
2 (α1 − α2)(u · E)2. (2)

The Smoluchowski operator, D, is expressed in terms of the gradient operator on the unit
sphere, ∂/∂u, which, in spherical polar coordinates, has the form

∂

∂u
= eθ

∂

∂θ
+

eφ

sin θ

∂

∂φ
, (3)

with the usual spherical unit vectors eθ , eφ . For a suspending fluid of viscosity η, and
for mesoscale particles of radius a, the rotational diffusion coefficient is given as DR =
kB T/8πηa3. A relaxation time τR is defined by τR = 1/DR in terms of which the Debye
relaxation time is τD = τR/2.

We assume that up to time t = 0 the suspension is in equilibrium in a constant uniform
field E0 which is directed along the z-axis, E0 = E0ez . The equilibrium distribution function
is given by the Boltzmann expression

W0(u) = exp[−βV0(u)]/Z(ξ0, σ0), (4)

with the potential energy V0, in field E0, given as

−βV0(u) = ξ0 cos θ + σ0 cos2 θ, (5)

where θ is the spherical polar angle between the z-axis and the dipole direction u. The
parameters ξ0 = βm E0 and σ0 = 1

2β(α1 − α2)E2
0 have the property that σ0/ξ

2
0 is independent

of the magnitude E0 of the background field since the polarizabilities α1, α2 are assumed to
be field-independent constants. The partition function Z(ξ0, σ0) is given as

Z(ξ0, σ0) =
∫

exp[−βV0(u)] du = 2π

∫ 1

−1
exp[ξ0x + σ0x2] dx . (6)

For a dilute suspension of particles with number density n, the equilibrium polarization in field
E0 at time t = 0 is given by

P0 = n〈µ〉0 = nm
∫

uW0(u) du = nmez

∫
cos θW0(u) du = nm〈P1(cos θ)〉0ez, (7)

where P1(cos θ) is the Legendre polynomial of order 1. For later use it is convenient to
introduce the function M�(ξ0, σ0) defined as the average of the Legendre polynomial P�(cos θ)

with respect to W0(u):

M�(ξ0, σ0) = 〈P�(cos θ)〉0 =
∫

P�(cos θ)W0(u) du. (8)

To evaluate the M� we introduce the expansion

exp[ξ0x + σ0x2] =
∞∑

�=0

(2� + 1)

2
N�(ξ0, σ0)P�(x), (9)
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where the P�(x) are Legendre polynomials and the coefficient functions N�(ξ0, σ0) have a
representation derived elsewhere [16, 17] in terms of Hermite polynomials Hn:

N�(ξ0, σ0) = (2i
√

σ 0)
�

∞∑
p=0

2(� + p)!

p!(2� + 2 p + 1)!
(−σ0)

p H�+2p

( −iξ0

2
√

σ 0

)
. (10)

It follows from these definitions that we can express the partition function and the M� as

Z(ξ0, σ0) = 2π N0(ξ0, σ0), (11)

M�(ξ0, σ0) = N�(ξ0, σ0)/N0(ξ0, σ0). (12)

3. Linear response to a longitudinal probe field

At time t = 0, with the system in equilibrium under the influence of the field E0, an additional
sinusoidal probe field of the form E1eiωt is suddenly switched on, where the constant, uniform
field E1 is weak compared with the background field, |E1| � |E0|. We ask for the linear
response of the polarization to this perturbing field. To obtain the response it is necessary to
solve the Smoluchowski equation (1) to first order in the perturbation E1. Thus we expand to
first order the potential,

V (u) = V0(u) + V1(u) + · · · , (13)

the distribution function,

W (u, t) = W0(u) + W1(u, t) + · · · , (14)

and the Smoluchowski equation. Since W0(u) is a solution of the zeroth-order Smoluchowski
equation, we find that we must solve the inhomogeneous equation

∂W1(u, t)

∂ t
= D0W1(u, t) + DR

∂

∂u
·
(

β
∂V1

∂u
W0(u)

)
, (15)

subject to the initial condition W1(u, 0) = 0. The normalization condition on the distribution
function implies that∫

W1(u, t) du = 0. (16)

The operator D0 is the Smoluchowski operator for the unperturbed system with potential V0.
The perturbing field E1 may be oriented in any direction relative to E0 but, in linear

response, we can decompose it into longitudinal (parallel to E0) and transverse (normal to E0)
components and consider each separately. For simplicity, we first suppose that E1 is purely
longitudinal, E1 = E‖ = E‖ez , which gives for the perturbing potential V1 the expression

βV1(u, t) = −[βm + β(α1 − α2)(u · E0)](u · E‖)eiωt = −
[

1 +
2σ0

ξ0
cos θ

]
cos θξ‖eiωt , (17)

where ξ‖ = βm E‖ and ξ‖ � ξ0. Using this expression for βV1 and the gradient operator as
given in equation (3), we obtain the inhomogeneous term driving equation (15) as

DR
∂

∂u
·
(

β
∂V1

∂u
W0(u)

)
= DRW0(u)g‖(u)ξ‖eiωt , (18)

where g‖(u) may be expressed in terms of Legendre polynomials as

g‖(u) =
∞∑

�=0

g�‖ P�(cos θ), (19)
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with non-zero expansion coefficients

g0‖ = −2

3
ξ0 − 16

15

σ 2
0

ξ0
g1‖ = 2 − 12

5
σ0,

g2‖ = 2

3
ξ0 + 8

σ0

ξ0
− 16

21

σ 2
0

ξ0
,

g3‖ = 12

5
σ0, g4‖ = 64

35

σ 2
0

ξ0
,

(20)

and g�‖ = 0 for � > 4.
Since the inhomogeneous term is proportional to W0(u), it is advantageous here, as also

in the earlier study of relaxation functions [15–17], to factor out the equilibrium distribution,
writing

W1(u, t) = W0(u)ξ‖ f‖(u, t). (21)

The inhomogeneous Smoluchowski equation (15) then leads to an equation for f‖(u, t):

∂ f‖(u, t)

∂ t
= L0 f‖(u, t) + DRg‖(u)eiωt , (22)

where we introduce the adjoint Smoluchowski operator L0 given in spherical polar
coordinates by

L0 = DR

(
∂

∂u
− β

∂V0

∂u

)
· ∂

∂u

= DR

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
− (ξ0 sin θ + 2σ0 cos θ sin θ)

∂

∂θ

]
. (23)

Because the perturbing longitudinal field preserves the axial symmetry of the equilibrium
solution W0, we can solve the equation for f‖(u, t) = f‖(θ, t) by expansion in Legendre
polynomials:

f‖(θ, t) =
∞∑

�=0

B�0(t)P�(cos θ). (24)

Inserting this expansion in equation (22) gives a set of first-order coupled equations for the
coefficients B�0(t):
dB�0

dt
= −DR

[
�(� + 1)B�0 + ξ0

(� − 1)�

(2� − 1)
B�−10 − ξ0

(� + 1)(� + 2)

(2� + 3)
B�+10

+ 2σ0
(� − 2)(� − 1)�

(2� − 3)(2� − 1)
B�−20 − 2σ0

�(� + 1)

(2� − 1)(2� + 3)
B�0

− 2σ0
(� + 1)(� + 2)(� + 3)

(2� + 3)(2� + 5)
B�+20

]
+ DR g�‖eiωt , (25)

where the g�‖ are given in equation (20). Note that B00(t) obeys the equation

dB00

dt
= DR

(
2

3
ξ0 B10(t) +

4

5
σ0 B20(t)

)
+ DR g0‖eiωt , (26)

but that the equations for B�0(t), for � � 1, are independent of B00(t). Thus we need solve
the coupled system (25) for � � 1 only, and then B00(t) is obtained from (26).

For times t > 0, the normalization condition imposes a sum rule on the B�0(t).
Using (16), (21), (24) and recalling (8) we find the result

∞∑
�=0

B�0(t)M�(ξ0, σ0) = 0. (27)
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This sum rule provides a useful test of the accuracy of the solution for the B�0(t).
The polarization can now easily be expressed to first order in terms of the B�0(t). We

introduce a dimensionless polarization F (t) via

P (t) = n〈µ〉t = nm
∫

uW (u, t) du = nmF (t). (28)

By axial symmetry, F (t) has only a z-component which is calculated from the first-order
distribution function (14) as

Fz(t) = M1(ξ0, σ0) + ξ‖
∞∑

�=0

B�0(t)
1

2� + 1
(�M�−1(ξ0, σ0) + (� + 1)M�+1(ξ0, σ0)). (29)

4. Laplace transform solution

To solve the time-dependent coupled equations (25) we first carry out a Laplace transform to
convert the differential equations into linear algebraic equations. Thus we define

B̂�0(s) = DR

∫ ∞

0
exp[−st/τR]B�0(t) dt, (30)

and, using the initial condition B�0(0) = 0, obtain the algebraic system[
−s − �(� + 1) + 2σ0

�(� + 1)

(2� − 1)(2� + 3)

]
B̂�0 − ξ0

(� − 1)�

(2� − 1)
B̂�−10 + ξ0

(� + 1)(� + 2)

(2� + 3)
B̂�+10

− 2σ0
(� − 2)(� − 1)�

(2� − 3)(2� − 1)
B̂�−20 + 2σ0

(� + 1)(� + 2)(� + 3)

(2� + 3)(2� + 5)
B̂�+20

= − g�‖
s − iωτR

. (31)

After solving this system for � � 1, B̂00(s) may be obtained from

−s B̂00(s) +
2

3
ξ0 B̂10(s) +

4

5
σ0 B̂20(s) = − g0‖

s − iωτR
. (32)

The general structure of the algebraic equations (31), (32) implies that the B̂�0(s) are
meromorphic functions of s with poles at positions s j = −λ0 j , j = 1, 2, 3, . . ., on the
negative real s-axis, and, in addition, a pole at s = iωτR corresponding to the steady solution
driven by the perturbing field. There is no pole in B̂00(s) at s = 0 in spite of the form of (32).
If one looks explicitly at the system (31) at s = 0, one finds that the solution at this value of s
is B̂10(0) = −1/iωτR , B̂20(0) = −(4σ0/3ξ0)(1/iωτR), B̂�0(0) = 0 for � > 2, thus cancelling
the apparent pole in B̂00(s).

Denoting the residue of B̂�0(s) at s = −λ0 j by p�0 j and the residue at s = iωτR by q�0,
we can use the inverse Laplace transform to write the solution for B�0(t), when � � 1, as

B�0(t) =
∞∑
j=1

p�0 j exp[−λ0 j t/τR] + q�0 exp[iωt]. (33)

From (32) we find for B00(t)

B00(t) = −
∞∑
j=1

(
2ξ0

3
p10 j +

4σ0

5
p20 j

)
1

λ0 j
exp[−λ0 j t/τR]

+
1

iωτR

(
2ξ0

3
q10 +

4σ0

5
q20 + g0‖

)
exp[iωt]. (34)
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Note that B00(t) is well behaved at ω = 0 for the same reason that B̂00(s) does not have
a pole at s = 0 as explained above. The solution obtained here for the B�0(t) consists of
a superposition of a transient term made up of a sum of exponentially decaying modes and
a steady term proportional to exp[iωt]. The transient component has the same form as the
relaxation functions defined in our earlier work [15] but in the present case, all the residues
p�0 j , q�0 are dependent on the frequency ω of the perturbing field.

From the B�0(t) we obtain the complex dimensionless polarization Fz(t) as

Fz(t) = M1(ξ0, σ0) + ξ‖M1(ξ0, σ0)B00(t)

+ ξ‖
∞∑
j=1

P0 j (ω) exp[−λ0 j t/τR] + ξ‖ Q0(ω) exp[iωt], (35)

where

P0 j (ω) =
∞∑

�=1

p�0 j(ω)
1

2� + 1
(�M�−1(ξ0, σ0) + (� + 1)M�+1(ξ0, σ0)),

Q0(ω) =
∞∑

�=1

q�0(ω)
1

2� + 1
(�M�−1(ξ0, σ0) + (� + 1)M�+1(ξ0, σ0)).

(36)

The physical polarization is given by the real part of Fz(t).

5. Removing the steady-state pole

In the solution given above, all amplitudes p�0 j (ω), q�0(ω) have a frequency dependence
which can only be obtained by numerical evaluation of these residues at a range of ω-values.
However, it is possible to make the frequency dependence more explicit if we factor out the
pole at s = iωτR from the B̂�0(s). To do this, define functions Ĉ�0(s) by setting

B̂�0 = Ĉ�0(s)

s − iωτR
. (37)

After making this substitution into the system (31) the factor 1/(s − iωτR) disappears from
the equations and the inhomogeneous term is simply given by −g�‖ which depends only on ξ0,
σ0 but not on ω. The solution Ĉ�0(s) again has poles at the same values of s on the negative
real axis, s j = −λ0 j , but no pole at s = iωτR . Moreover, if we denote the residue of Ĉ�0(s)
at s j = −λ0 j by d�0 j , then d�0 j(ξ0, σ0) depends on ξ0, σ0 but not on ω. The residues q�0 of
B̂�0(s) at s = iωτR are now simply given as

q�0 = Ĉ�0(iωτR). (38)

The frequency dependence of the amplitudes p�0 j , P0 j in the transient terms now becomes
explicit. We find

p�0 j = −d�0 j(ξ0, σ0)

λ0 j + iωτR
, P0 j = − D0 j (ξ0, σ0)

λ0 j + iωτR
, (39)

with

D0 j (ξ0, σ0) =
∞∑

�=1

d�0 j (ξ0, σ0)
1

2� + 1
(�M�−1(ξ0, σ0) + (� + 1)M�+1(ξ0, σ0)). (40)

The solution for B00(t) now becomes

B00(t) = 2

15

∞∑
j=1

5ξ0d10 j + 6σ0d20 j

λ0 j (λ0 j + iωτR)
exp[−λ0 j t/τR]

+
1

iωτR

[
2ξ0

3
(Ĉ10(iωτR) − 1) +

4σ0

5

(
Ĉ20(iωτR) − 4σ0

3ξ0

)]
exp[iωt]. (41)
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The frequency dependence in q�0 and Q0 is not yet explicit, but to find it involves only solving
the equations for Ĉ�0(s) at s = iωτR rather than solving the equations for B̂�0(s) and then
extracting the residue at s = iωτR .

6. Transients and susceptibility

The dimensionless polarization Fz(t) as given in (35) is a superposition of a constant
background field value, a transient and a steady term. By subtracting off the constant
background contribution we can define differential transient and steady components of the
linear response, denoted as Tz(t) and Sz(t) respectively:

�Fz(t) = Fz(t) − M1(ξ0, σ0) = ξ‖(Tz(t) + Sz(t)), (42)

with the transient given as

Tz(t) = 2M1(ξ0, σ0)

15

∞∑
j=1

5ξ0d10 j + 6σ0d20 j

λ0 j (λ0 j + iωτR)
exp[−λ0 j t/τR]

−
∞∑
j=1

D0 j

λ0 j + iωτR
exp[−λ0 j t/τR]. (43)

From the steady term we define a dimensionless complex susceptibility χ‖(ω) by

Sz(t) = 1
3χ‖(ω) exp[iωt]. (44)

From the solution for Fz(t) we find for the susceptibility

χ‖(ω) = 3

iωτR
M1(ξ0, σ0)

[
2ξ0

3
(Ĉ10(iωτR) − 1) +

4σ0

5

(
Ĉ20(iωτR) − 4σ0

3ξ0

)]

+ 3
∞∑

�=1

Ĉ�0(iωτR)
1

2� + 1
(�M�−1(ξ0, σ0) + (� + 1)M�+1(ξ0, σ0)). (45)

The normalization for χ‖(ω) is chosen such that for polar particles (m �= 0, α1 = 0, α2 = 0)
in zero background field (E0 = 0) it reduces to the Debye function [3, 4]

χ D
‖ (ω) = 1

1 + iωτD
. (46)

The frequency dependence of χ‖(ω) as expressed in (45) is still implicit, involving
the Ĉ�0(s) evaluated at s = iωτR . However, using the initial condition, �Fz(0) =
ξ‖(Tz(0)+ Sz(0)) = 0, we get an alternative expression for χ‖ in terms of the transient solution,
χ‖(ω) = −3Tz(0). In this way of expressing χ‖ the dependence on ω is completely explicit:

χ‖(ω) = −2M1(ξ0, σ0)

5

∞∑
j=1

5ξ0d10 j + 6σ0d20 j

λ0 j (λ0 j + iωτR)
+ 3

∞∑
j=1

D0 j

λ0 j + iωτR
. (47)

Finally, we note that from the real part of the transient term, T ′
z (t) = Re Tz(t), we can

define a normalized relaxation function

�z(t) = T ′
z (t)/T ′

z (0), (48)

and its associated mean relaxation time

τzM (ω) =
∫ ∞

0
�z(t) dt . (49)
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By use of (43) we get the result

τzM (ω)/τR =
[

2M1(ξ0, σ0)

15

∞∑
j=1

5ξ0d10 j + 6σ0d20 j

λ0 j (λ
2
0 j + ω2τ 2

R)
−

∞∑
j=1

D0 j

λ2
0 j + ω2τ 2

R

]

×
[

2M1(ξ0, σ0)

15

∞∑
j=1

5ξ0d10 j + 6σ0d20 j

λ2
0 j + ω2τ 2

R

−
∞∑
j=1

λ0 j D0 j

λ2
0 j + ω2τ 2

R

]−1

. (50)

We see from the results in this section that the transient response, the mean relaxation time of
the transient and the susceptibility can all be given in terms of the decay rates λ0 j (ξ0, σ0) and
the associated residues d�0 j(ξ0, σ0) of the Ĉ�0(s). In these exact expressions the dependence
on the frequency ω of the perturbing field is completely explicit.

7. Response to a transverse probe field

If we consider a transverse probe field instead of a longitudinal one we can obtain similar
results to those in section 6 with only slightly more effort. For simplicity we assume that the
weak probe field lies now along the x-axis, E1 = E⊥ = E⊥ex . Writing u in terms of spherical
polar coordinates as u = (sin θ cos φ, sin θ sin φ, cos θ) we obtain the perturbing potential for
transverse fields as

βV1(u, t) = −[βm + β(α1 − α2)(u · E0)](u · E⊥)eiωt

= −
[

1 +
2σ0

ξ0
cos θ

]
sin θ cos φξ⊥eiωt , (51)

with ξ⊥ = βm E⊥. The inhomogeneous driving term analogous to (18) is now

DR
∂

∂u
·
(

β
∂V1

∂u
W0(u)

)
= DRW0(u)g⊥(u)ξ⊥eiωt , (52)

where now g⊥(u) can be expressed in terms of associated Legendre functions [20] P1
� (cos θ)

as

g⊥(u) =
∞∑

�=1

g�⊥ P1
� (cos θ) cos φ, (53)

with non-zero expansion coefficients

g1⊥ = 2 − 4

5
σ0, g2⊥ = 1

3
ξ0 + 4

σ0

ξ0
− 4

21

σ 2
0

ξ0
,

g3⊥ = 4

5
σ0, g4⊥ = 16

35

σ 2
0

ξ0
,

(54)

and g�⊥ = 0 for � > 4.
Factoring out the equilibrium distribution as in (21), W1(u, t) = W0(u)ξ⊥ f⊥(u, t), we

find the inhomogeneous equation for f⊥(u, t):

∂ f⊥(u, t)

∂ t
= L0 f⊥(u, t) + DRg⊥(u)eiωt , (55)

with initial value f⊥(u, 0) = 0. Since g⊥(u) no longer has axial symmetry, we can solve the
equation for f⊥(θ, φ, t) with the expansion

f⊥(θ, φ, t) =
∞∑

�=1

(B�1(t)e
iφ P1

� (cos θ) + B�−1(t)e
−iφ P−1

� (cos θ)). (56)
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Again we obtain a set of coupled first-order differential equations for the coefficient functions
B�1(t), B�−1(t). For the B�1(t) these have the form

dB�1

dt
= −DR

[
�(� + 1)B�1 + ξ0

(� − 1)2

(2� − 1)
B�−11 − ξ0

(� + 2)2

(2� + 3)
B�+11

+ 2σ0
(� − 2)2(� − 1)

(2� − 3)(2� − 1)
B�−21 − 2σ0

[�(� + 1) − 3]

(2� − 1)(2� + 3)
B�1

− 2σ0
(� + 2)(� + 3)2

(2� + 3)(2� + 5)
B�+21

]
+

1

2
DR g�⊥eiωt . (57)

The equations for B�−1 are slightly different in form but one can show that the solutions for
the B�−1(t) are simply expressed in terms of the B�1(t) by

B�−1(t) = −�(� + 1)B�1(t). (58)

The dimensionless polarization as defined in (28) now has a constant component in the
z-direction and a time-dependent component in the x-direction:

FT rans(t) = ez M1(ξ0, σ0) + ex
ξ⊥
2

∞∑
�=1

(
B�1(t) − 1

�(� + 1)
B�−1(t)

)
�(� + 1)

2� + 1

× (M�−1(ξ0, σ0) − M�+1(ξ0, σ0)). (59)

Using (58) and subtracting off the constant background gives for the transverse linear response

�Fx(t) = ξ⊥
∞∑

�=1

B�1(t)
�(� + 1)

2� + 1
(M�−1(ξ0, σ0) − M�+1(ξ0, σ0)). (60)

The method of solution now follows the pattern of the longitudinal case. Laplace
transformation converts the differential equations (57) to linear algebraic equations:[
−s − �(� + 1) + 2σ0

[�(� + 1) − 3]

(2� − 1)(2� + 3)

]
B̂�1 − ξ0

(� − 1)2

(2� − 1)
B̂�−11 + ξ0

(� + 2)2

(2� + 3)
B̂�+11

− 2σ0
(� − 2)2(� − 1)

(2� − 3)(2� − 1)
B̂�−21 + 2σ0

(� + 2)(� + 3)2

(2� + 3)(2� + 5)
B̂�+21 = −1

2

g�⊥
s − iωτR

.

(61)

Unlike the longitudinal case, there is no term like B00(t) which can be eliminated in terms of
other coefficients. The system (61) has the same mathematical structure as the system (31).
The B̂�1(s) have poles on the negative real s-axis at points s j = −λ1 j , j = 1, 2, 3, . . ., with
residues p�1 j and a pole at s = iωτR with residue q�1. The analogues of (35) and (36) are

�Fx(t) = ξ⊥
∞∑
j=1

P1 j (ω) exp[−λ1 j t/τR] + ξ⊥Q1(ω) exp[iωt], (62)

and

P1 j (ω) =
∞∑

�=1

p�1 j(ω)
�(� + 1)

2� + 1
(M�−1(ξ0, σ0) − M�+1(ξ0, σ0)),

Q1(ω) =
∞∑

�=1

q�1(ω)
�(� + 1)

2� + 1
(M�−1(ξ0, σ0) − M�+1(ξ0, σ0)).

(63)

Just as in section 5 we can remove the steady-state pole by introducing functions Ĉ�1(s)
via the definition

B̂�1 = Ĉ�1(s)

s − iωτR
. (64)
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The function Ĉ�1(s) has poles at s j = −λ1 j with associated residues d�1 j(ξ0, σ0) which are
independent of ω. We find

p�1 j = −d�1 j(ξ0, σ0)

λ1 j + iωτR
, P1 j = − D1 j (ξ0, σ0)

λ1 j + iωτR
, (65)

with

D1 j (ξ0, σ0) =
∞∑

�=1

d�1 j(ξ0, σ0)
�(� + 1)

2� + 1
(M�−1(ξ0, σ0) − M�+1(ξ0, σ0)). (66)

Finally, we introduce transient and steady components of the transverse response:

�Fx(t) = ξ⊥(Tx(t) + Sx(t)), (67)

with

Tx(t) = −
∞∑
j=1

D1 j

λ1 j + iωτR
exp[−λ1 j t/τR]. (68)

A transverse susceptibility χ⊥(ω) is defined by

Sx (t) = 1
3χ⊥(ω) exp[iωt], (69)

which can be expressed as

χ⊥(ω) = 3
∞∑

�=1

Ĉ�1(iωτR)
�(� + 1)

2� + 1
(M�−1(ξ0, σ0) − M�+1(ξ0, σ0)). (70)

The initial condition, �Fx(0) = 0, gives the alternative expression

χ⊥(ω) = 3
∞∑
j=1

D1 j

λ1 j + iωτR
. (71)

From the real part of the transient term, T ′
x = Re Tx(t), we define a transverse relaxation

function

�x(t) = T ′
x(t)/T ′

x(0), (72)

and its mean relaxation time

τxM (ω) =
∫ ∞

0
�x(t) dt . (73)

From (68) we can express this as

τxM (ω)/τR =
[ ∞∑

j=1

D1 j

λ2
1 j + ω2τ 2

R

]/[ ∞∑
j=1

λ1 j D1 j

λ2
1 j + ω2τ 2

R

]
. (74)

Once again, as in the longitudinal case, the frequency dependence of Tx(t), τxM (ω) and χ⊥(ω)

has been made explicit.

8. Numerical results

From the results of sections 6 and 7 it is clear that to study the transient response, the
mean relaxation time of the transient and the steady-state susceptibility we must calculate
the relaxation rates λmj and the amplitudes d�mj (m = 0, 1) from the algebraic equations for
the Ĉ�m(s). These equations are identical in form with those for the B̂�m(s) in equations (31)
and (61) except that the factor 1/(s − iωτR) on the right-hand side is omitted. As explained
in earlier work [15–17] the method of solution is truncation of the algebraic equations at
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Figure 1. Plots of the two lowest relaxation rates λ01 (solid) and λ02 (dashed) for the longitudinal
case. Curves a and e correspond to pure dipoles (r0 = 0) while curves b, c, d and f , g, h correspond
respectively to r0 = 0.1, 0.2, 0.3.
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Figure 2. Plots of the two lowest relaxation rates λ11 (solid) and λ12 (dashed) for the transverse
case. Curves a and e correspond to pure dipoles (r0 = 0) while curves b, c, d and f , g, h correspond
respectively to r0 = 0.1, 0.2, 0.3.

sufficiently high order, �Max = N . The relaxation rates are computed then as the roots
s j = −λmj N of the characteristic polynomial of the truncated equation set using the function
‘Characteristic Polynomial’ of Mathematica 4.0. The amplitudes d�mj are approximated by
the residues of Ĉ�m(s) at the poles {λmj N } and are found by numerical contour integration of
Ĉ�m(s) around each of the poles in the complex s-plane. Convergence of the approximation is
most rapid for pure dipoles and becomes less rapid as σ0 increases relative to ξ0. Convergence
is easily checked by varying the truncation order N . For three-figure accuracy of all numbers
reported here, we found N � 35 was sufficient.

In figures 1 and 2 we show the dependence on the external field ξ0 of the two lowest
decay rates λm1, λm2 for both the longitudinal (m = 0) and transverse (m = 1) cases. For
permanent dipoles (σ0 = 0, curves a and e), these decay rates increase monotonically as
ξ0 increases. In earlier relaxation calculations [15–17] we have shown this for the lowest
six modes λmj , j = 1, . . . , 6. For polarizable particles there is a significant change. As
noted earlier in section 2, for dielectric particles the ratio r0 = σ0/ξ

2
0 is independent of the

strength of the background field and is characteristic of the particle polarizability relative to
its intrinsic dipole moment. In figures 1 and 2 we show also the roots λmj for the three cases



Transient and steady linear response of dielectric particles in a field subject to a weak AC probe field 7731

5 10 15 20

0.1

0.2

0.3

0.4

___zM
τ
τ R

ω τR

Figure 3. Plots of the longitudinal transient relaxation time as a function of frequency. The solid
curves from the top down correspond respectively to pure dipoles with ξ0 = 3, 6, 9. The dashed
curves describe polarizable particles with ξ0 = 3 and polarizability ratios r0 = 0.1, 0.2, 0.3, 0.4
corresponding respectively to the dashed curves ordered from the top down at the high-frequency
end.
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Figure 4. Plots of the transverse transient relaxation time as a function of frequency. The solid
curves from the top down correspond respectively to pure dipoles with ξ0 = 3, 6, 9. The dashed
curves describe polarizable particles with ξ0 = 3 and polarizability ratios r0 = 0.1, 0.2, 0.3, 0.4
corresponding respectively to the dashed curves ordered from the top down.

r0 = 0.1, 0.2, 0.3 (curves b, c, d and f , g, h) corresponding to increasing polarizability. For
λ0 j with j � 2 and for all λ1 j the relaxation rates again increase as ξ0 increases but with
weak oscillations appearing. However, in the longitudinal case the rate λ01 can decrease and
approach zero at large values of ξ0 with the ratio r0 fixed but non-zero. A similar behaviour
was seen in our earlier relaxation calculations [16].

Such a decreasing value of λ01(ξ0, σ0) for polarizable particles can produce a qualitative
change in the susceptibility and the transient relaxation time τzM at low frequencies ω since λ01

occurs in denominators of equations (47) and (50) in the form λ01 + iωτR or λ2
01 + ω2τ 2

R which
can each become small at low frequencies. The small denominators are relevant of course
only if the numerators, given in terms of the amplitudes d�mj and Dmj , remain appreciable in
magnitude. In tables 1 and 2 we list the amplitudes d�m1 associated with the lowest root λm1

for � = 1, . . . , 6 for pure dipoles (r0 = 0) and for polarizable particles (r0 = 0.1, 0.2, 0.3, 0.4)
in a background field corresponding to ξ0 = 3. In tables 3 and 4 we give the Dmj for the same
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Figure 5. Plots of the real part of the longitudinal susceptibility χ ′‖. The solid curves from
the top down correspond to pure dipoles with ξ0 = 0 (the Debye susceptibility), ξ0 = 3, 6, 9
respectively. The dashed curves represent polarizable particles with ξ0 = 3 and polarizability
ratios r0 = 0.1, 0.3, 0.4 corresponding respectively to the dashed curves ordered from the top
down at the vertical intercept end of the graph.
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Figure 6. Plots of the dissipative part of the longitudinal susceptibility χ ′′‖ . The solid curves
from the top down correspond to pure dipoles with ξ0 = 0 (the Debye susceptibility), ξ0 = 3, 6, 9
respectively. The dashed curves represent polarizable particles with ξ0 = 3 and polarizability ratios
r0 = 0.1, 0.3, 0.4 corresponding respectively to the dashed curves ordered from the top down at
the centre of the graph (ωτD = 1).

parameter values and for j = 1, . . . , 6. We note that for all values of r0 the amplitudes d�m1

decrease in magnitude as � increases but there can be appreciable weight associated with more
than one �-value. For the weights Dmj we see that for pure dipoles (r0 = 0) the dominant
weight is in the slowest mode, j = 1, but that as r0 increases, the weights spread appreciably
across several modes and, for r0 = 0.3, 0.4, the weights Dm2 associated with the next slowest
mode, j = 2, become dominant. In spite of this, the weights d101, d201, D01 are sufficiently
large that the anomalous rate λ01 has a significant effect easily seen in the mean decay time
τzM shown in figure 3. For pure dipoles we see there that τzM (ω) is only weakly dependent on
frequency and decreases monotonically as ξ0 increases. However, for polarizable particles, as
r0 increases at fixed ξ0 = 3, there is a more and more marked enhancement of τzM (ω) at low
frequencies. This is in contrast to the behaviour of τxM (ω) for transverse perturbations shown
in figure 4 where both pure dipoles and polarizable particles behave similarly with only a weak
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Figure 7. Cole–Cole plots of χ ′′‖ against χ ′‖. The solid curves (from the outermost to innermost)
correspond to pure dipoles with ξ0 = 0 (the Debye susceptibility), ξ0 = 3, 6 respectively. The
heavy dotted curves represent polarizable particles with ξ0 = 3 and polarizability ratios r0 = 0.1
(outermost curve) r0 = 0.3 (middle curve) and r0 = 0.4 (innermost curve).

Table 1. Amplitudes d�01 for � = 1, . . . , 6 and varying polarizability σ0 = r0ξ2
0 with ξ0 = 3.

r0 d101 d201 d301 d401 d501 d601

0.0 5.957 −2.938 1.046 −0.296 0.0700 −0.0142
0.1 5.827 −3.117 0.793 −0.032 −0.0395 0.0102
0.2 4.472 −2.402 0.357 0.198 −0.0932 −0.0004
0.3 3.058 −1.578 0.046 0.280 −0.0812 −0.0251
0.4 1.964 −0.948 −0.102 0.258 −0.0452 −0.0420

Table 2. Amplitudes d�11 for � = 1, . . . , 6 and varying polarizability σ0 = r0ξ2
0 with ξ0 = 3.

r0 d111 d211 d311 d411 d511 d611

0.0 2.166 −0.501 0.115 −0.024 0.0044 −0.0007
0.1 3.790 −1.205 0.239 −0.015 −0.0058 0.0016
0.2 6.012 −2.559 0.504 0.052 −0.0501 0.0059
0.3 6.956 −3.657 0.721 0.201 −0.1308 0.0042
0.4 1.964 −0.948 −0.102 0.258 −0.0452 −0.0420

Table 3. Amplitudes D0 j for j = 1, . . . , 6 and varying polarizability σ0 = r0ξ
2
0 with ξ0 = 3.

r0 D01 D02 D03 D04 D05 D06

0.0 2.435 −0.709 0.067 −0.001 0.0000 0.0000
0.1 2.516 −0.128 −0.113 0.033 0.0009 0.0000
0.2 2.029 2.091 −0.958 0.071 0.0270 −0.0008
0.3 1.451 5.516 −2.212 −0.205 0.1542 0.0008
0.4 0.969 9.613 −2.963 −1.462 0.4961 0.0301

enhancement near ω = 0 and with a decrease of τxM as either the field ξ0 or the polarizability
r0 increases.

The complex susceptibility is best discussed in terms of real and negative imaginary
components which, for longitudinal perturbations, we write as

χ‖ = χ ′
‖ − iχ ′′

‖ , (75)

and correspondingly for χ⊥ in the transverse case. The negative imaginary part χ ′′
‖ as defined
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Figure 8. Plots of the real part of the transverse susceptibility χ ′⊥. The solid curves ordered from
the top down at the vertical intercept end correspond to pure dipoles with ξ0 = 0 (the Debye
susceptibility), ξ0 = 3, 6, 9 respectively. The dashed curves represent polarizable particles with
ξ0 = 3 and polarizability ratios r0 = 0.1, 0.3, 0.4 corresponding respectively to the dashed curves
ordered from the bottom up.

Table 4. Amplitudes D1 j for j = 1, . . . , 6 and varying polarizability σ0 = r0ξ
2
0 with ξ0 = 3.

r0 D11 D12 D13 D14 D15 D16

0.0 0.692 0.078 0.006 0.0002 0.0000 0.0000
0.1 0.794 0.282 0.053 0.0059 0.0004 0.0000
0.2 0.715 0.687 0.144 0.0261 0.0032 0.0003
0.3 0.409 1.324 0.264 0.0643 0.0107 0.0013
0.4 0.969 9.613 −2.963 −1.4621 0.4961 0.0301

in (75) is the dissipative component which is always �0. For pure dipoles we can compare our
numerical results for χ‖ with those calculated from the after-effect function in [11]. In figures 5
and 6 we plot χ ′

‖, χ ′′
‖ against log10(ωτD) to facilitate comparison with this earlier work. The

results for pure dipoles are shown as solid curves corresponding first to the Debye limit as given
in (46) (ξ0 = 0), and then to external field values ξ0 = 3, 6, 9. There is complete numerical
agreement with the earlier calculations [11] for ξ0 = 3, 6. In addition we show as dashed
curves on the same plot the susceptibility for polarizable particles with ξ0 = 3 and σ0 = r0ξ

2
0

for r0 = 0.1, 0.3, 0.4. For increasing polarizability (r0 = 0.3, 0.4) there is a qualitative change
of behaviour from the results for pure dipoles. This is best seen in a Cole–Cole plot [4, 21] of
χ ′′

‖ against χ ′
‖ as shown in figure 7. On such a plot the Debye susceptibility (46) is a perfect

semicircle of radius 0.5. If the susceptibility can be well approximated by the Debye form but
with a single relaxation time τM replacing τD and an altered amplitude, then we should again
get an almost semicircular plot of reduced radius. For pure dipoles, shown as solid lines for
ξ0 = 0 (Debye), ξ0 = 3, 6, the plots are closely semicircular, as is the plot (heavy dots) for
a polarizable particle with ξ0 = 3 and σ0 = 0.1ξ2

0 . For greater polarizability, corresponding
to r0 = 0.3, 0.4, the plots are significantly distorted from semicircles, consistent with the
behaviour of τzM (ω) shown in figure 3 which is greatly enhanced at low frequencies.

The transverse susceptibility χ⊥ is shown in figures 8–10. Once again the pure dipole
results for χ ′

⊥, χ ′′
⊥ agree with the earlier after-effect function calculation [11]. However, the

effect of polarizability is much less dramatic in a qualitative sense than in the longitudinal case
but more important quantitatively. We observe from these plots that the magnitude of χ⊥ is
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Figure 9. Plots of the dissipative part of the transverse susceptibility χ ′′⊥. The solid curves ordered
from the top down (at the maximum point) correspond to pure dipoles with ξ0 = 0 (the Debye
susceptibility), ξ0 = 3, 6, 9 respectively. The dashed curves represent polarizable particles with
ξ0 = 3 and polarizability ratios r0 = 0.1, 0.3, 0.4 corresponding respectively to the dashed curves
ordered from the bottom up (at the maximum point).
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Figure 10. Cole–Cole plots of χ ′′⊥ against χ ′⊥. The solid curves (from the outermost to innermost)
correspond to pure dipoles with ξ0 = 0 (the Debye susceptibility), ξ0 = 3, 6, 9 respectively. The
heavy dotted curves represent polarizable particles with ξ0 = 3 and polarizability ratios r0 = 0.1
(innermost curve) r0 = 0.3 (middle curve) and r0 = 0.4 (outermost curve).

greater than the magnitude of χ‖ for the same values of background field ξ0 and polarizability
σ0. Moreover, we see in figures 8–10 that the effect of increasing polarizability is to enhance
χ⊥ in magnitude rather than to qualitatively change its frequency dependence as happens with
χ‖. The Cole–Cole plot in figure 10 shows too that a single-relaxation-time approximation
will be reasonable even for polarizable particles with r0 = 0.4 unlike in the longitudinal case.
Again this conclusion is consistent with the behaviour of τxM (ω) seen in figure 4 where there
is little frequency dependence.

9. Discussion and conclusions

We have shown that the linear response of the polarization of a dilute suspension of dielectric
particles to a weak AC probe in the presence of a strong DC background field can be directly
calculated in the same manner as the relaxation functions for the system were calculated
earlier [15–17]. The transient response and its mean relaxation time are given in the same
way as the earlier relaxation functions in terms of a set of exponentially decaying modes,
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completely characterized by a set of decay rates and associated amplitudes. The steady-state
response is described by a susceptibility which can also be expressed in terms of the decay
rates and amplitudes of the transient. We have obtained simple explicit expressions for the
transient, its mean relaxation time and the susceptibility.

For simple permanent dipoles we get the same results as earlier calculations based on
the after-effect formalism [11]. However, we have also examined the effect of additional
polarizability which has a marked but different impact upon the longitudinal and transverse
response. The most striking feature in the longitudinal case arises from the slowest decay
rate λ01 which can get smaller as the polarizability σ0 increases relative to the background
field ξ0. This leads to a departure of the susceptibility χ‖ from the simple single-relaxation-time
Debye description. For pure dipoles both susceptibilities get smaller as the background field
ξ0 increases with the longitudinal susceptibility decreasing more rapidly than the transverse
susceptibility. However, in the transverse case, the presence of polarizability enhances the
susceptibility χ⊥ relative to the pure dipole case. If experimental measurements of both the
transient and steady response are possible, our results provide a simple way to describe both
sets of data with a common set of rates λmj and amplitudes d�mj .
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